Thedata inside the two-dimensional array in matrix format looks as follows: Step 1) It shows a 2×2 matrix. It has two rows and 2 columns. The data inside the matrix are numbers. The row1 has values 2,3, and row2 has values 4,5. The columns, i.e., col1, have values 2,4, and col2 has values 3,5. Step 2) Kalkulatorperkalian Matriks Online hasil perkalian matriks baris dan kolom A dan B sebesar 3x3,4x4,5x5, dimensi nxn dengan metode perhitungan langkah demi langkah. mxn calc. Kalkulator matriks MatriksA memiliki baris sebanyak m dan kolom sebanyak n, artinya matriks A berordo (mxn) ditulis𝐴𝑚×𝑛 . Contoh: 2 3 8 4 𝐴2×3 = (7 ) 1 Matriks A memiliki 2 baris dan 3 kolom dan berordo 2x3. Maka dapat diketahui bahwa, 𝑎23 = 1 𝑎11 = 2 Vay Tiền Nhanh. Kali ini kita akan belajar materi mengenai perkalian matriks, oke mari kita SIMAK MATERI berikut ini Perkalian Skalar Matriks Bentuk Umum contoh Perkalian Matriks Ordo 2X2 dengan 2X2 Ordo 3X1 dengan 1X3 Ordo 1X3 dengan 3X1 Ordo 2X3 dengan 3X2 Ordo 3X2 dengan 2X3 X = = = Silahkan DOWNLOAD Soal Latihan Pemecahan Masalah yang terkait dengan operasi matriks Salah satu usaha yang dijalankan oleh siswa di SMK PERTIWI KUNINGAN adalah beternak lele dan gurami. Setiap akhir minggu, lele dan gurami ini dipanen untuk dijual ke beberapa rumah makan disekitar sekolah. rata-rata setiap akhir minggu diperoleh 120 ekor lele dan 60 ekor gurami. Berapa banyak ikan yang dijual setiap bulannya ? Nyatakan dalam bentuk perkalian skalar matriks. PEMBAHASAN Banyaknya rata-rata ikan yang diperoleh setiap minggunya dapat dinyatakan dalam matriks berikut. Banyaknya ikan setiap bulan dapat dinatakan dalam matriks berikut Perkalian matriks cak semau dua macam merupakan perkalian matriks dengan matriks dan perkalian matriks dengan bilangan riel maupun skalar,perkalian matriks dengan garis hidup cak benar mudah dilakukan karena tidak cak semau syarat tertentu, tatap di bagian matriks dengan matriks bisa operasikan jika memenuhi syarat perkalian matriks, sekiranya tidak memenuhi syarat perkalian matriks maka tak bisa dioperasikan, lihat di bagian B. Kerjakan cara menghitung perkalian matriks akan berbeda-beda tergantung pada ordo matriksnya maka itu karena itu diberikan rumus-rumus ilmu hitung perkalian matriks tikai ordo serta teoretis cak bertanya perkalian matriks antara lain perkalian matriks 2×2, perkalian matriks 2×3, perkalian matriks 2×1, perkalian matriks 3×2 dengan 2×2, perkalian matriks 2×3 dengan 3×2, perkalian matriks 2×3, perkalian matriks 4×4, pun contoh soal pergandaan matriks ordo 3×3. A. Perkalian matriks denganbilangan benaran/skalar Tidak ada syarat apapun untuk perkalian matriks dengan ganjaran cak benar/ skalar ataupun sebaliknya. Cara mengalikan matriks dengan skalar adalah dengan mengalikan semua zarah matriks dengan skalar tersebut. Secara umum jika A=aij dan k yaitu skalar maka kA=kaij . Sempurna a b c Sifat-rasam perkalian skalar Untuk bilangan-bilangan sungguhan k dan c dan untuk matriks-matriks A dan B yang berordo sepadan, berlaku a. kcA=kcA b. kA+B=kA+kB sifat distributif c. k+cA=kA+cA sifat distributif d. e. B. Multiplikasi matriks dengan matriks Misalkan terdapat dua biji pelir matriks yaitu matriks A dan matriks B. Syarat perkalian matriks A dengan matriks B yakni banyak kolom matriks A = banyak baris matriks B. Umpama arketipe misalnya matriks A1×2 dan B2×3 dapat dikalikan karena banyak kolom matriks A = 2 , Dan banyak baris matriks B = 2. Baca kembali soal-dan-pembahasan-matriks Contoh lainnya misalnya diketahui Maka matriks yang bisa dikalikan dan tidak ialah sebagai berikut A×A tak bisa, A×B bisa, A×C dapat, A×D lain dapat. B×A tidak bisa, B×B boleh, B×C bisa, B×D tidak bisa. C×A enggak boleh, C×B tidak boleh, C×C tidak bisa, C×D boleh. D×A tak bisa, D×B tidak bisa, D×C bukan dapat, D×D bisa. Secara umum jika Am×falak= amn dan Bcakrawala×p=bnp maka Am×cakrawalaBn×p=Cm×p Cara mengalikan matriks A dengan matriks B adalah dengan mengalikan semua baris matriks A dengan semua kolom matriks B. Setiap perkalian baris dan kolom menghasilkan elemen bau kencur sreg hasil kali matriks. Cara mengalikan baris dengan kolom yaitu perumpamaan berikut 1. Jika derek dan rubrik terdiri dari suatu elemen, kalikan elemen baris dengan atom kolom. Hal ini terjadi pada perkalian matriks ordo mx1 dengan 1xp . 2. Kalau derek dan ruangan terdiri dari dua elemen atau makin, kalikan unsur purwa baris dengan zarah pertama rubrik ditambah kalikan elemen kedua baris dengan elemen kedua kolom dan seterusnya. Peristiwa ini terjadi pada multiplikasi matriks ordo mxn dengan nxp dengan horizon bukan 1 . Berikut ini adalah beberapa rumus pergandaan matriks untuk ordo-ordo tertentu. 1. Perkalian matriks ordo 1×2 dengan 2×1 Contoh 2. Perkalian matriks ordo 1×2 dengan 2×2 Arketipe 3. Perkalian matriks ordo 2×1 dengan ordo 1×2 Teoretis 4. Perkalian matriks ordo 2×2 dengan ordo 2×1 Cermin 5. Pergandaan matriks ordo 2×2 dengan ordo 2×2 Contoh 6. Perkalian matriks ordo 2×2 dengan ordo 2×3 7. Pergandaan matriks ordo 3×1 dengan ordo 1×2 8. Perkalian matriks ordo 3×1 dengan ordo 1×3 9. Perkalian matriks ordo 3×2 dengan ordo 2×2 10. Pergandaan matriks ordo 3×2 dengan ordo 2×3 11. Perkalian matriks ordo 3×3 dengan ordo 3×2 12. Perbanyakan matriks ordo 3×3 dengan ordo 3×3 13. Perkalian matriks ordo 4×1 dengan ordo 1×2 14. Perkalian matriks ordo 4×1 dengan ordo 1×3 15. Perkalian matriks ordo 4×1 dengan ordo 1×4 16. Pergandaan matriks Ordo 4×4 dengan ordo 4×4 Rasam-sifat multiplikasi matriks AB ≠BA ABC = ABC AB+C=AB+AC B+CD=BD+CD Source Posted by Hai sobat belajar Gramedia, jika kalian merasa kesulitan ketika belajar matematika ada baiknya kalian bisa mengikuti les privat, sehingga bisa lebih meningkatkan nilai prestasi belajar kalian di sekolah. Pembahasan kali ini admin akan menjelaskan materi tentang perkalian matrik. Meski banyak siswa menganggap materi ini cukup sulit, tetapi jangan berhenti untuk terus belajar. Jika mau mempelajari dengan sungguh-sungguh, perkalian matriks bisa dikuasai dengan baik dan soal-soalnya bisa dikerjakan dengan mudah. Pembahasan kali ini akan dimulai dengan uraian mengenai pengertian perkalian matriks. Perkalian matriks adalah salah satu pembelajaran dalam ilmu matematika. Matriks itu sendiri adalah sebuah kumpulan bilangan yang susunannya terdiri dari baris atau kolom. Selain itu, bisa juga dengan susunan keduanya. Kumpulan bilangan ini diapit dalam tanda kurung. Matriks ini digunakan ketika ingin menyederhanakan penyampaian data. Dengan adanya matriks, maka akan lebih mudah dalam tahap pengolahan selanjutnya. Mengenai jenisnya, matriks terbagi atas rumus matematika matriks baris, rumus menghitung matriks kolom, rumus mencari matriks nol, matriks diagonal, matriks segitiga bawah, matriks skalar, matriks persegi, rumus matriks matematika segitiga alas, dan matriks identitas. Untuk lebih mengenal perkalian bilangan matriks, alangkah baiknya kalian simak ulasan lengkapnya di bawah ini hingga selesai. Pengertian Perkalian Matriks1. Notasi2. Definisi3. IlustrasiPenggunaan yang Fundamental1. Pemetaan Linear2. Sistem Persamaan LinearSifat-Sifat Umum Perkalian Matriks 1. Tidak Komutatif2. Sifat Distributif3. Perkalian dengan Skalar4. Transpos5. Sifat Asosiatif6. Kompleksitas Tidak AsosiatifDetailContoh Soal Perkalian MatriksSoal 1Soal 2Rekomendasi Buku & Artikel TerkaitBuku TerkaitMateri Terkait Pakaian Adat Agar perkalian matriks dapat dilakukan, matriks A perlu memiliki jumlah kolom yang sama dengan jumlah baris pada matriks B. Hasil perkalian keduanya adalah matriks dengan jumlah baris yang sama dengan matriks A dan jumlah kolom yang sama dengan matriks B. Tak hanya penjumlahan dan pengurangan, ternyata di dalam matriks juga ada perkalian matriks. Matriks ini bisa dikalikan dengan bilangan bulat maupun matriks lainnya. Perkalian di dalam matriks memiliki syarat masing-masing. Perkalian matriks adalah nilai pada matriks yang bisa dihasilkan dengan cara dikalikan-nya tiap baris dengan setiap kolom yang memiliki jumlah baris yang sama. Setiap anggota matriks ini nantinya akan dikalikan dengan anggota elemen matriks lainnya. Perkalian matriks ini dilakukan sesuai urutan dan aturan yang berlaku pada perkalian bilangan matriks. Saat sedang menghitung nilai suatu matriks, berarti akan melihat adanya kolom dan juga baris. Kolom dan baris digunakan untuk menentukan maupun menghitung nilai matriks. Pada dasarnya kolom dan baris sangat diperlukan dalam penghitungan matriks. Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Matriks hasil perkalian keduanya, akan memiliki baris sebanyak baris matriks pertama, dan kolom sebanyak kolom matriks kedua. Perkalian matriks A dan B dinyatakan sebagai AB. Perkalian matriks didefinisikan pertama kali oleh matematikawan Prancis Jacques Philippe Marie Binet pada tahun 1812. Definisi ini digunakannya untuk merepresentasikan komposisi dari pemetaan-pemetaan linear yang dinyatakan dalam bentuk matriks. Perkalian matriks selanjutnya menjadi konsep dasar dalam aljabar linear, dan memiliki banyak penerapan di berbagai bidang matematika, matematika terapan, statistika, fisika, ekonomi, dan teknik. Menghitung hasil perkalian matriks adalah operasi yang penting dalam semua penerapan komputasi dari bidang aljabar linear. 1. Notasi Artikel ini akan menggunakan konvensi penulisan berikut matriks dinyatakan oleh huruf kapital dengan cetak tebal, contohnya A; vektor dinyatakan oleh huruf kecil dengan cetak tebal, contohnya a; dan entri-entri elemen dari vektor dan matriks akan dinyatakan dalam huruf miring karena mereka anggota dari suatu lapangan, contohnya A dan a. Notasi indeks sering digunakan untuk menyatakan suatu definisi, dan dipakai sebagai format baku dalam literatur-literatur. Entri ke-i, j dari matriks A umumnya dinyatakan sebagai Aij, Aij, atau aij; sedangkan label yang menyatakan bahwa matriks merupakan sebuah elemen dari suatu koleksi dari matriks umumnya hanya ditulis sebagai A1, A2, dan lain-lain. 2. Definisi Jika adalah matriks berukuran m × n dan adalah matriks berukuran , dengan elemen-elemen sebagai berikut. Hasil perkalian kedua matriks tersebut, dinyatakan tanpa menggunakan tanda kali atau titik, adalah sebuah matriks berukuran . dengan setiap entri pada matriks didefinisikan sebagai untuk nilai i = 1, … , m dan nilai . Dengan kata lain, entri adalah hasil yang didapatkan dengan mengalikan secara berpasang-pasangan entri di baris ke- matriks dengan entri di kolom ke- matriks , lalu menjumlahkan semua hasil perkalian ini. Intepretasi lain dari proses ini, entri adalah hasil perkalian titik baris ke- matriks dengan kolom ke- matriks . Dengan demikian, juga dapat ditulis sebagai berikut. Hal ini menyebabkan hasil perkalian hanya terdefinisi jika dan hanya jika banyaknya kolom di sama dengan banyaknya baris di , yang dalam kasus ini sebanyak . Dalam sebagian besar kasus, entri dari matriks akan berupa bilangan. Namun, entri dari matriks dapat berupa sembarang objek matematika, asal memiliki sifat penjumlahan dan perkalian. Sifat ini mengartikan objek matematika tersebut haruslah asosiatif, penjumlahannya komutatif, dan perkaliannya distributif terhadap penjumlahan. Sebagai contoh, entri dari matriks dapat berupa matriks, lihat artikel tentang matriks blok. 3. Ilustrasi Gambar berikut memberikan diagram hasil perkalian dari dua matriks dan , menunjukkan bagaimana setiap perpotongan di matriks hasil perkalian berkorespodensi dengan sebuah baris di dan sebuah kolom di . Nilai pada matriks hasil perkalian, yang ditandai dengan simbol lingkaran, adalah Penggunaan yang Fundamental Secara historis, perkalian matriks diperkenalkan untuk membantu dan memperjelas perhitungan-perhitungan dalam aljabar linear. 1. Pemetaan Linear Jika suatu ruang vektor memiliki basis yang terbatas, semua vektornya dapat dinyatakan secara unik oleh sebuah barisan skalar yang terhingga. Barisan ini dinamakan vektor koordinat, dengan entri-entrinya adalah koordinat dari vektor terhadap vektor-vektor basis. Vektor-vektor koordinat juga membentuk suatu ruang vektor lain, yang isomorfik dengan ruang vektor asalnya. Vektor koordinat umumnya disusun sebagai matriks kolom juga disebut dengan vektor kolom, yakni sebuah matriks yang berisi satu kolom. Jadi, sebuah vektor kolom menyatakan suatu vektor koordinat, sekaligus vektor di ruang vektor asalnya. Sebuah peta linear dari suatu ruang vektor berdimensi ke suatu ruang vektor berdimensi , akan memetakan suatu vektor kolom Menjadi vektor kolom Dengan demikian, peta linear dapat didefinisikan oleh sebuah matriks dan pemetaan vektor kolom dapat dinyatakan sebagai perkalian matriks Misalkan adalah suatu peta linear yang lain, yang memetakan ruang vektor berdimensi ke suatu ruang vektor berdimensi . Peta linear dapat direpresentasikan sebagai sebuah matriks berukuran . Dengan menjabarkan perhitungan, dapat ditunjukkan matriks yang dihasilkan komposisi pemetaan adalah matriks hasil perkalian 2. Sistem Persamaan Linear Bentuk umum dari sebuah sistem persamaan linear adalah Dengan menggunakan notasi yang dijelaskan di atas, sistem tersebut setara dengan persamaan matriks Sifat-Sifat Umum Perkalian Matriks Perkalian matriks memiliki berapa sifat yang sama dengan perkalian pada umumnya. Namun, perkalian matriks tidak terdefinisi jika jumlah kolom pada faktor yang pertama berbeda dengan jumlah baris pada faktor yang kedua. Perkalian matriks juga tidak komutatif, bahkan jika hasil perkalian tetap terdefinisi setelah urutan perkalian ditukar. 1. Tidak Komutatif Suatu operasi dikatakan komutatif jika, untuk sebarang dua elemen dan dengan hasil perkalian yang terdefinisi, maka hasil perkalian juga terdefinisi dan memenuhi hubungan Jika dan masing-masing adalah matriks berukuran dan , maka terdefinisi ketika , dan terdefinisi ketika . Jadi, secara umum jika salah satu hasil perkalian terdefinisi, hasil perkalian yang lain dengan urutan yang ditukar tidak terdefinisi. Pada kasus , maka kedua perkalian terdefinisi, tapi menghasilkan matriks dengan ukuran yang berbeda; sehingga tidak mungkin sama. Hanya pada kasus , yakni ketika dan adalah matriks persegi dengan ukuran yang sama, kedua perkalian terdefinisi dan juga memiliki ukuran yang sama. Namun bahkan untuk kasus ini, secara umum berlaku Sebagai contoh tapi Satu kasus khusus, sifat komutatif terjadi ketika dan adalah matriks persegi diagonal yang berukuran sama; maka . 2. Sifat Distributif Perkalian matriks bersifat distributif terhadap penjumlahan matriks. Misalkan , , , dan masing-masing adalah matriks berukuran , , , dan . Sifat distributif mengartikan matriks memiliki sifat distributif kiri dan sifat distributif kanan Sifat distributif ini dapat dituliskan dalam bentuk entri pada matriks, sebagai 3. Perkalian dengan Skalar Jika adalah sebuah matriks dan adalah sebuah skalar, maka matriks dan dihasilkan dengan mengalikan dari kiri atau dari kanan semua entri di dengan . Ketika skalar bersifat komutatif, didapatkan hubungan Pada kasus hasil perkalian terdefinisi dengan kata lain, banyaknya kolom di sama dengan banyaknya baris di , akan berlaku dan Jika skalar bersifat komutatif, keempat matriks tersebut sama. Sifat ini muncul dari ke-bilinear-an bilinearity hasil kali skalar 4. Transpos Jika entri pada matriks bersifat komutatif, maka transpos dari hasil perkalian matriks-matriks adalah hasil perkalian dengan urutan yang dibalik, dari transpos dari matriks-matriks tersebut. Secara simbolis ini dinyatakan sebagai dengan T menyatakan operasi transpos, yakni operasi yang mengubah kolom matriks menjadi baris dan sebaliknya. Hal ini tidak berlaku bagi matriks dengan entri yang tidak komutatif; karena entri-entri yang dihasilkan dari perkalian akan berubah ketika urutan perkalian dibalik. 5. Sifat Asosiatif Untuk sebarang matriks , , dan , hasil perkalian dan terdefinisi jika dan hanya banyaknya kolom di sama dengan banyaknya baris di , dan banyaknya kolom di sama dengan banyaknya baris di . Jika salah satu hasil perkalian tersebut terdefinisi, hasil perkalian yang lain juga terdefinisi. Dalam kasus ini, matriks memiliki sifat asosiatif. Seperti sembarang operasi asosiatif lainnya, penggunaan tanda kurung tidak diperlukan, sehingga cukup menulis hasil perkalian tersebut sebagai Sifat ini dapat diperumum ke perkalian yang melibatkan banyak matriks, asal dimensi mereka memungkinkan perkalian terjadi. Dengan kata lain, jika adalah matriks-matriks, dengan banyaknya kolom sama dengan banyak baris untuk , maka hasil perkalian terdefinisi dan hasilnya tidak bergantung pada urutan perkalian yang dilakukan, selama urutan dari matriks-matriks tidak berubah. Sifat ini dapat dibuktikan secara langsung tapi rumit dengan melakukan manipulasi penjumlahan. Sifat ini juga merupakan hasil dari fakta matriks menyatakan pemetaan linear. Dengan demikian, sifat asosiatif matriks adalah kasus spesifik dari sifat asosiatif komposisi fungsi. 6. Kompleksitas Tidak Asosiatif Walaupun hasil perkalian matriks tidak bergantung pada urutan operasi yang dilakukan selama urutan matriks-matriks tidak diubah, kompleksitas komputasi perkalian dapat sangat bergantung pada urutan operasi. Sebagai contoh, misalkan , , dan masing-masing merupakan matriks berukuran , , dan . Menghitung memerlukan operasi perkalian; sedangkan menghitung memerlukan perkalian. Algoritma-algoritma telah dikembangkan untuk mencari urutan perkalian yang terbaik. Ketika banyaknya matriks yang perlu dikali, , meningkat, dapat ditunjukkan pemilihan urutan perkalian yang terbaik memiliki kompleksitas Detail Perkalian matriks adalah suatu operasi biner yang menghasilkan suatu matriks dari dua matriks dengan entri dalam suatu medan, atau secara lebih umum dalam suatu gelanggang atau bahkan suatu semigelanggang. Produk matriks dirancang untuk menampilkan komposisi peta linear yang diwakili oleh matriks-matriks. Oleh sebab itu, pengalian matriks merupakan operasi paling mendasar dalam bidang aljabar linier, dan karena itu banyaknya penerapannya di bidang matematika. Pengalian matriks juga merupakan operasi yang penting dalam matematika terapan, fisika, dan teknik. Secara lebih rinci, jika A adalah suatu matriks n × m dan B adalah suatu matriks m × p, hasil pengalian matriks AB adalah suatu matriks n × p, dimana entri m di sepanjang baris A dikalikan dengan entri m di sepanjang kolom B dan dijumlahkan untuk menghasilkan suatu entri dari AB. Apabila dua peta linear diwakili oleh matriks-matriks, maka pengalian matriks mewakili komposisi dua peta. Definisi produk matriks membutuhkan adanya entri-entri dari suatu semigelanggang, dan tidak membutuhkan pengalian unsur-unsur semigelanggang agar komutatif. Dalam banyak penerapan, unsur-unsur matriks menjadi bagian suatu medan, meskipun semigelanggang tropikal juga merupakan suatu pilihan umum untuk masalah jarak terpendek, bahkan dalam kasus matriks-matriks atas medan-medan, hasil pengaliannya pada umumnya tidak komutatif, meskipun dalam penjumlahan matriks bersifat asosiatif dan distributif. Matriks-matriks identitas yaitu matriks persegi dimana entri-entrinya bernilai nol di luar diagonal utama dan 1 pada diagonal utama adalah unsur-unsur identitas dari pengalian matriks. Oleh karena itu, matriks n x n pada suatu gelanggang membentuk suatu gelanggang, yang tidak komutatif kecuali jika n=1 dan gelanggang dasarnya komutatif. Contoh Soal Perkalian Matriks Berikut adalah beberapa soal perkalian bilangan matriks lengkap dengan pembahasan selengkapnya untuk kalian. Soal 1 Tentukan hasil perkalian matriks bilangan A dan B di bawah ini. Pembahasan Perkalian dua buah matriks dengan masing-masing mempunyai ukuran 2 x 2 di atas bisa menghasilkan matriks dengan ukuran 2 x 2 pula. Proses perkalian bilangan dua matriks ini tak begitu rumit. Hal ini dikarenakan tiap anggota penyusun matriks dengan ukuran 2 x 2 hanya ada 4 anggota untuk tiap matriks. Dengan begitu, perkaliannya bisa dengan mudah dilakukan. Soal 2 Tentukan hasil perkalian bilangan matriks 3 x 3 berikut ini. Pembahasan Perlu untuk kalian ketahui, perkalian matriks 3 x 3 sedikit lebih rumit jika anda bandingkan dengan perkalian matriks 2 x 2. Bukan tanpa alasan. Hal ini dikarenakan ukuran matriks dengan bilangan 3 x 3 memiliki jumlah anggota yang lebih banyak. Matriks persegi yang mempunyai ukuran 3 x 3 ada 9 anggota, dimana terbagi dalam 3 baris serta 3 kolom. Dalam matriks yang memiliki ukuran 3 x 3, tiap baris dan kolom ada 3 anggota. Konsep perkalian pada bilangan matriks dengan ukuran 3 x 3 ini sama dengan proses perkalian matriks yang memiliki ukuran 2 x 2. Hanya saja memang lebih rumit. Meski rumit, bukan berarti tidak bisa diselesaikan. Untuk itu, pastikan kalian mencoba mempelajarinya secara teliti. Itulah uraian mengenai perkalian dua matriks dan contoh soalnya. Diharapkan setelah melihat materi di blog Gramedia yang membahas pelajaran matematika para siswa dan siswi menjadi lebih mudah memahami perkalian dua matriks. Tidak hanya memahaminya saja, tetapi juga bisa lebih mudah dalam mengerjakan soal-soal yang diberikan oleh guru di sekolah. Rekomendasi Buku & Artikel Terkait BACA JUGA Kenalan dengan Penemu Aljabar dan Algoritma Memahami Sifat Asosiatif dalam Operasi Hitung Matematika Mengenal Penemu Aljabar dan Cara Menghitung Aljabar Pengertian Determinan Cara Mencari, Manfaat, dan Contoh Soal Pengertian Rasio dan Pemanfaatannya dalam Matematika dan Akuntansi ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien

perkalian matriks 1x3 dengan 3x1